skk

pact_

The Accountability and Evidence Layer for Autonomous Al Agents

What is pact_?
Pact is the trust infrastructure for Al agents that negotiate, spend money, and make
commitments autonomously. It turns agent interactions into cryptographic evidence that is

provable, replayable, and auditable in order for companies to safely deploy agents in real-world
commerce. If an agent can act, Pact makes that action accountable.

The Problem

Al agents are starting to buy APIs and data, negotiate prices and SLAs, trigger payments and
act across company boundaries, even buying company data proprietarily.

But today, logs are not evidence, payments don’t prove intent, failures aren’t attributable and
legal, compliance, and insurance teams have no visibility into these payments. This makes
autonomous agents uninsurable, unauditable, and unsafe at scale.

The hard problem isn’t payments. What I'm trying to tackle at pact_ is proving who agreed to
what, under which constraints, and who'’s responsible when something breaks. What's missing

is a primitive for negotiation, policy enforcement, deterministic outcomes, and evidence-grade
accountability.

My Solution

Pact is a deterministic negotiation and evidence system for agents. When agents interact
through Pact, every negotiation round is signed and hash-linked and policies are enforced
in-line. We make settlements binary with either commit or abort results and failures classified
deterministically. All transactions generate an evidence bundle automatically and responsibility
is assigned via Default Blame Logic automatically as well.

Think:

Stripe for payments

Git for code history

pact_ for agent intent and accountability

Current System Core Capabilities

Proof-of-Negotiation (PoN) provide cryptographically signed and replayable transcripts
Policy-as-Code (PaC) enforce price, SLA, reputation, and compliance constraints
Atomic Settlement Boundary makes sure there are no partial or ambiguous outcomes
Evidence Bundles are portable artifacts for audit, disputes, and insurance for every
transaction

skk

Default Blame Logic is pact_’s deterministic responsibility assignment

Verifier-Only Tooling allows auditors to not need SDKs or wallets

Pact Passport create a verifiable trust derived from real outcomes of these agents and
not promises

How Developers Use It

Buyer agents wrap high-risk actions (spend, negotiate) inside Pact. Then, provider agents add a
thin Pact adapter in front of their service. Enterprises and auditors verify outcomes post-hoc
from artifacts alone.

Adoption will be incremental because Pact is used only where provability matters, but | see this
market being central to transactions in a few years.

Business Model
e Free SDK for adoption
e Microscopic coordination fee when Pact-signed transcripts trigger settlement
e Paid APIs for reputation, creditworthiness, and trust scoring
e Enterprise products for audit, compliance, disputes, and insurance workflows

High-frequency agent interactions x tiny fees = massive scale.

Why | think this Scales

There is no custody of funds, no marketplace and most importantly, no competition with
payment rails. Pact sits above all agents, rails, and ecosystems.

Other companies like Radius and Natural focus on agent execution, task orchestration, tool
calling, workflow automation, making agents more capable and autonomous, etc. They answer
the question of “How does the agent accomplish this task?”

Whereas, Pact answers what exactly was negotiated, who signed which commitments, what
constraints were enforced, what failed and whose fault was it, and can a third party verify this
without trusting anyone. We produce the necessary cryptographic negotiation transcripts,
deterministic replay, evidence bundles, blame judgments, and reputation consequences for that
agent's provider.

That’s not execution — that’s institutional trust. Once one counterparty requires Pact transcripts,
everyone else must comply.

Use Case Example: Autonomous Art Authentication Agent

Scenario 1:

This scenario is specifically bizarre for a reason to show that pact_ has broad applications. A
museum deploys an Al agent tasked with verifying whether a newly surfaced sculpture is an

skk

authentic, previously undocumented work by Jeff Koons before committing to a $4.2M
acquisition. This is not a single API call but it's a multi-party, high-risk, reputation-sensitive task.

What the Agent Must Do Autonomously
1. Purchases high-resolution scans from a private imaging provider

2
3.
4.
5

Each provider:

Commissions a materials analysis from a lab agent

Requests stylistic verification from two independent expert-model providers
Negotiates SLAs and pricing for each service

. Aggregates results and produces a recommendation

1. Charges per analysis
2. Has different confidence levels
3. Has reputational risk if wrong

Why Pact Is Required

Without Pact With Pact

Agreements are informal Every negotiation is signed and recorded
SLAs are unenforceable Every SLA is enforced by policy

If analysis is wrong, no one can prove Every failure has deterministic blame
responsibility assignment

The museum bears all risk Every decision is backed by evidence

Pact Flow

1. Intent Created

“Verify authenticity of sculpture X.
Budget < $25,000.

Confidence threshold = 92%.

All providers must have reputation = A.”

2. Negotiation (PoN)

a.
b.
c.
d.
e.

Imaging agent quotes $4,000

Materials lab quotes $8,500

Style model quotes $6,000

SLAs and confidence guarantees negotiated
All terms signed and hash-linked

3. Policy Enforcement

a.

Pact enforces:
i. Budget limits

skk

ii. Reputation thresholds
iii. Required redundancy (=2 independent opinions)
b. Execution and Settlement
i. Providers deliver analyses
i. Settlement executes atomically
iii. Late or failed providers are automatically flagged
c. Evidence Bundle Generated
i. Pact produces a portable evidence bundle containing:
1. All signed negotiations
2. Provider guarantees
3. Execution results
4. Integrity proofs
5. Confidence aggregation logic
d. Decision and Accountability
i. Agent recommends “Acquire” or “Reject”
ii. Iflater challenged, the museum can prove:
1. What the agent knew
2. What was promised
3. Who was responsible for errors

If Something Goes Wrong
If the sculpture is later proven fake:
e Pact deterministically identifies:
o Which provider failed
o Which guarantee was violated
Whether the agent acted within policy
e Evidence can be used for:
Refunds
Legal claims
Insurance recovery
Reputation penalties

O O O O

No ambiguity. No finger-pointing.

Scenario 2:

A core Al agent is tasked with training a small but critical model update overnight.

Instead of trusting a single cloud provider, it shards the job across multiple untrusted compute
agents to reduce cost and avoid vendor lock-in. Each compute agent runs arbitrary hardware,
charges per millisecond, claims correctness and has asymmetric information.

What the Agent Must Coordinate
The orchestrator agent must:
1. Negotiate price per FLOP
2. Enforce max latency and determinism constraints

3.
4.
5. Avoid paying for incorrect or duplicated work

Require verifiable execution proofs
Handle partial completion and retries

Why Existing Systems Break
Without Pact:

1.
2.
3.

But:

abrwd~

Payments can happen (x402 / crypto)
Logs exist
Results are returned

You cannot prove what was agreed

You cannot prove which shard failed

You cannot deterministically assign fault
You cannot replay the execution path
Disputes require humans and guesswork

At scale, this is unworkable.

Pact-Backed Flow (Technical)
Intent Declaration
The agent issues a signed intent:

This intent becomes the root hash of the Pact transcript.

{
"task": "model_training_shard",
"hash": "abc123...",
"budget_per_shard": "< $0.002",
"latency_ms": "< 500",

"determinism": "required",

"proof": ["execution_trace", "output_hash"],

"reputation_min": 0.92

}

Negotiation (Deterministic Rounds)
Each compute agent responds with:

1.
2.
3.
4.

price

hardware profile
expected latency
proof type supported

All bids and counters are:

1.
2.
3.

signed
hash-linked
ordered

skk

skk

Policy Enforcement (Pre-Execution)

Before any compute runs, Pact enforces:

budget caps

determinism requirements

provider reputation thresholds

redundancy constraints (e.g. 2-of-3 verification)

Violations abort before money or compute is wasted.

Settlement Authorization (Not Execution)
Pact authorizes settlement conditionally:

“Payment is valid if output hash matches intent-derived expectation.”
This is critical: settlement is gated by evidence, not trust.

Execution and Evidence Emission
Compute agents execute and return:
e output shard
e execution trace hash
e timing proofs

Each submission is attached to the transcript as evidence.

Deterministic Outcome Resolution
Pact:
1. Verifies hashes
2. Checks SLA timing
3. Matches execution to negotiated terms

Possible outcomes:
e [74 valid — settlement commits
e X Invalid output — abort + blame
° Timeout — classified failure

Default Blame Logic (DBL)

If a shard is wrong or late:
1. Pact identifies the last valid signed commitment
2. Assigns fault deterministically
3. Emits a signed judgment artifact

This artifact can be:
e Used for refunds
e Fed into reputation
e Consumed by insurers

skk
e Audited later without trusting the system operator
Vision

If your agent can spend money, make commitments, or act autonomously, it must run inside a
Pact boundary.

Pact is the accountability layer that makes autonomous commerce possible.

